
testpool Documentation
Release 0.0.3

Mark Hamilton

Oct 03, 2018

Contents

1 Quick Start 3
1.1 Simulation Demonstration . 3
1.2 Testpool Installation . 3
1.3 A Short Tour . 4
1.4 KVM Hypervisor Demonstration . 4
1.5 Testpool Stack . 4
1.6 KVM Installation . 4
1.7 A Short Tour . 5

2 Installation 9
2.1 Getting Testpool . 9
2.2 What is Installed . 9

2.2.1 Testpool Server Installation on Ubuntu 16.04 . 9

3 Development 11
3.1 Web Development . 11
3.2 Debian Packaging . 12

4 Log Stash Support 13
4.1 ELK Installation . 13
4.2 Testpool Configuration . 13

5 Kibana 5.3 17

6 Indices and tables 19

i

ii

testpool Documentation, Release 0.0.3

Contents:

Contents 1

testpool Documentation, Release 0.0.3

2 Contents

CHAPTER 1

Quick Start

Testpool maintains a pool of pristine VMs cloned from a template. Users can immediate acquire a VM, use it and then
throw it away. Testpool then replaces discarded VMs with a fresh clone. Cloning VMs can take a considerable amount
of time, but with a pool of VMs, acquiring a single VM is immediate. Testpool supports KVM and docker.

There are three demonstrations of Testpool. One uses fake resources to demostrate a large deployment. The second
demo usss docker and is designed to work on a sinlge laptop for the sake of having an easy demo. The third uses KVM
hypervisors.

1.1 Simulation Demonstration

1.2 Testpool Installation

We’ll install Testpool from Debian.

1. Install several required packages:

sudo apt-get install -y apt-file libvirt0 virtinst pm-utils
sudo apt-get install -y libvirt-bin libvirt-dev qemu-system debhelper
sudo apt-get install -y python-yaml python-pip python-all enchant
sudo apt-get install -y fakeroot dh-python
sudo apt-file update
sudo pip install -q docker==3.4.1 docker-pycreds==0.3.0 requests>=2.19.1
sudo pip install -q pytz>=2018.5 Django==1.11.13
sudo pip install -q djangorestframework>=3.8.2
sudo pip install -q django-pure-pagination==0.3.0
sudo pip install -q django-split-settings==0.3.0
sudo pip install -q libvirt-python==4.0 ipaddr>=2.1.11 structlog>=16.1.0
sudo pip install -q pyyaml easydict pyenchant==2.0.0 pybuild==0.2.6

2. Download Testpool from github release page:

Check for the latest release at:

3

testpool Documentation, Release 0.0.3

https://github.com/testcraftsman/testpool/releases

below is an example:

https://github.com/testcraftsman/testpool/releases/download/v0.1.5/python-testpool_0.1.5-1_
all.deb sudo dpkg -i python-testpool_0.1.5-1_all.deb

1. Check testpool services are running:

systemctl status tpl-daemon systemctl status tpl-db

2. Run the Testpool demo that ships with the product

tpl-demo -v

The demo creates several fake pools, then periodically acquires a resource then releases it. After
60 seconds, all resources are released for 1 minute. The dashboard shows the status of the various
resources:

http://127.0.0.1:8000/testpool/view/dashboard

Alternatively, tpl-demo can be run with –product docker. Don’t run tpl-demo if going through the
next section in the Short Tour.

1.3 A Short Tour

In order for Testpool to manage VMs, Hypervisor information is registered with Testpool along with a VM template.

1.4 KVM Hypervisor Demonstration

Normally Testpool is installed on a central server and configured to manage several hypervisors. Testpool supports
KVM which is required for this demonstration.

To expedite this guide, Testpool content is installed on the KVM hypervisor. For final installation, Testpool can be
installed either on the hypervisor or a separate system. The differences will be identified during the installation steps.

1.5 Testpool Stack

Testpool consists of several releated products. They are:

• Testpool-client - installed on each client, this package provides an API

to acquire and release VMs. This is useful when writing tests and not wanting to use the REST
interface directly.

• Testpool-beat - pushes testpool metrics to logstash. This is useful for monitoring VM pools.

Make sure to install the appropriate major and minor version that matches the testpool package. For example, if the
version of Testpool is 0.1.0. Then install 0.1.Y of Testpool-client and Testpool-beat. Where Y can be any value.

1.6 KVM Installation

For this quick start guide, we’ll need a single VM named test.template on the hypervisor which is off and ready to be
cloned. When the VMs starts it must use DHCP to acquire its IP address. What the VM is running is not important and

4 Chapter 1. Quick Start

https://github.com/testcraftsman/testpool/releases
https://github.com/testcraftsman/testpool/releases/download/v0.1.5/python-testpool_0.1.5-1_all.deb
https://github.com/testcraftsman/testpool/releases/download/v0.1.5/python-testpool_0.1.5-1_all.deb
http://127.0.0.1:8000/testpool/view/dashboard

testpool Documentation, Release 0.0.3

there are good instructions on the internet for setting up a KVM hypervisor and creating a VM. For installing KVM on
Ubuntu 18.04, refer to this site https://help.ubuntu.com/community/KVM/Installation. Once complete, you will need
the following information:

• user and password that can install VMs. This is the user that is part of the libvirtd and kvm groups.

• IP Address of the KVM hypervisor if Testpool is not running on the hypervisor

For the rest of this guide, we’ll assume the user tadmin with password ‘password’. Since Testpool is installed on the
hypervisor, the IP address used is localhost.

Now a single VM is required which represents the template that is managed and cloned by Testpool. Using virt-
manager, these instructions will create an Ubuntu 16.04 server VM.

1. sudo apt-get install virt-manager

2. Run virt-manager

3. From File, choose Add Connection.

4. If applicable, choose Connect to remote host

5. Enter admin for Username and IP address for the Hostname. This may be either localhost or the IP address of
the KVM hypervisor. The default ssh method will probably work.

6. Now connect and enter the user password.

7. Select Hypervisor in the virt-manager,

8. Choose Create a new virtual manager.

9. Choose Network Install (HTTP, FTP or NFS) then Forward.

10. For URL, enter http://us.archive.ubuntu.com/ubuntu/dists/bionic/main/installer-amd64/ The URL changes
periodically, check the Ubuntu site for the latest valid links.

11. Choose appropriate RAM and CPU. For a demo, select 512 and 1 CPU.

12. Create a disk with 5 GiB of space.

13. Then select Finish fro the network setup.

1.7 A Short Tour

In order for Testpool to manage VMs, Hypervisor information is registered with Testpool along with a VM template.

Create a VM on the KVM hypervisor called test.template and keep it shutdown. Now create a Testpool pool given the
IP address and name of the VM template. Since we’re running on the hypervisor, the IP address is localhost.

Where hypervisor-ip is replaced with the actual Hypervisor IP address. While running Testpool on the hypervisor, use
the tpl CLI to create a test pool:

./bin/tpl pool add example kvm qemu:///system test.template 3

Confirm the pool is valid:

./bin/tpl pool detail example

The Testpool Daemon will clone 3 VMs from the test.template. This can take a while which is the point of this product.
In that, Testpool generates new clean clones based on test.template. The VMs available line in the detail output shows
the current number of available VMs. Use virt-manager to see the VMs being created.

1.7. A Short Tour 5

https://help.ubuntu.com/community/KVM/Installation

testpool Documentation, Release 0.0.3

From this point, Testpool daemon is cloning VMs. There are several examples to look through. The file exam-
ples/rest.py provides documentation and demonstrates how to use Testpool’s REST interface. Simply refer to the file
examples/rest.py.

Additionally, Testpool-client can be installed which provides a python API on top of the REST interface. To learn
more, http://testpool-client.readthedocs.io/en/latest.

"""
Examples on how to call the REST interfaces. Read the quick start guide in
order to configure Testpool server and then come back to this script.

As discussed in the Testpool quickstart guide. This example uses a
profile named example. These examples work best when all VMs have been cloned
and have retrieved their IP address. Make sure VMs are avaliable, run:

./bin/tpl profile list

To run this file type

py.test -s examples/python_api.py

These examples illustrates the use of the testpool.client. The global variable
GLOBAL in conftest defines the Testpool profile. Once a VM is acquired, this
test can login and use the VM throughout the entire testsuite. This assumes
that the VM has negotiated an IP address usually throught DHCP.

As these examples are running, use virt-manager to see hypervisor changes.
"""
import time
import json
import datetime
import urllib
import unittest
import requests
import conftest

TEST_URL = "http://%(hostname)s:8000/testpool/api/v1/" % conftest.GLOBAL

def acquire_get(url):
""" Wrap acquire with a delay in case none are available. """
##
previous tests may have acquired all VMs wait for a while to
acquire one
for _ in range(10):

resp = requests.get(url)
if resp.status_code == 403:

time.sleep(60)
else:

rsrc = json.loads(resp.text)
return rsrc

resp.raise_for_status()
##
return None

class Testsuite(unittest.TestCase):
(continues on next page)

6 Chapter 1. Quick Start

http://testpool-client.readthedocs.io/en/latest

testpool Documentation, Release 0.0.3

(continued from previous page)

""" Demonstrate each REST interface. """

def test_profile_list(self):
""" test_profile_list Show how to list profile content."""

url = TEST_URL + "profile/list"
resp = requests.get(url)
resp.raise_for_status()
profiles = json.loads(resp.text)

self.assertEqual(len(profiles), 1)
self.assertEqual(profiles[0]["name"], "example")

self.assertTrue("resource_max" in profiles[0])
self.assertTrue("resource_ready" in profiles[0])

def test_profile_acquire(self):
""" test_profile_acquire acquire a VM. """

url = TEST_URL + "profile/acquire/example"
requests.get(url)
rsrc = acquire_get(url)

##
Cloned VMs begin with the name of the template.
self.assertTrue(rsrc["name"].startswith("test.template"))
self.assertTrue(len(rsrc["name"]) > len("test.template"))
##

rsrc2 = acquire_get(url)

self.assertTrue(rsrc2["name"].startswith("test.template"))
self.assertTrue(len(rsrc2["name"]) > len("test.template"))

url = TEST_URL + "profile/release/%d" % rsrc["id"]
acquire_get(url)

url = TEST_URL + "profile/release/%d" % rsrc2["id"]
acquire_get(url)

def test_acquire_too_many(self):
""" test_acquire_too_many attempt to acquire too many VMs."""

prev_rsrcs = set()
url = TEST_URL + "profile/acquire/example"

##
Take all of the VMs
for _ in range(conftest.GLOBAL["count"]):

rsrc = acquire_get(url)

self.assertTrue(rsrc["name"].startswith("test.template"))
self.assertFalse(rsrc["name"] in prev_rsrcs)

prev_rsrcs.add(rsrc["id"])
##

(continues on next page)

1.7. A Short Tour 7

testpool Documentation, Release 0.0.3

(continued from previous page)

resp = requests.get(url)
self.assertEqual(resp.status_code, 403)

for rsrc_id in prev_rsrcs:
url = TEST_URL + "profile/release/%d" % rsrc_id
acquire_get(url)

def test_acquire_renew(self):
""" test_acquire_renew renew an acquired VM. """

url = TEST_URL + "profile/acquire/example"

rsrc = acquire_get(url)
rsrc_id = rsrc["id"]

url = TEST_URL + "resource/renew/%(id)s" % rsrc
resp = requests.get(url)
resp.raise_for_status()
rsrc = json.loads(resp.text)
self.assertEqual(rsrc["id"], rsrc_id)

params = {"expiration": 100}
resp = requests.get(url, urllib.urlencode(params))
resp.raise_for_status()
rsrc = json.loads(resp.text)
self.assertEqual(rsrc["id"], rsrc_id)

##
Check to see if the expiration is roughly 100 seconds.
timestamp = datetime.datetime.strptime(rsrc["action_time"],

"%Y-%m-%dT%H:%M:%S.%f")
expiration_time = timestamp - datetime.datetime.now()
self.assertTrue(expiration_time.seconds <= 100)
self.assertTrue(expiration_time.seconds >= 90)
##

url = TEST_URL + "profile/release/%d" % rsrc_id
resp = requests.get(url)
resp.raise_for_status()

8 Chapter 1. Quick Start

CHAPTER 2

Installation

2.1 Getting Testpool

Testpool is installed from source, download the latest from GitHub. This is also where we track issues and feature
request.

2.2 What is Installed

Testpool consists of:

1. A database installed on an Ubuntu 16.04 system, which can also be a KVM hypervisor

2. testpool-client, another repo, is installed on every client

Actually the last item is optional in that the testpool-client provides an API above the server’s REST API. One could
simply use the REST interface directly.

2.2.1 Testpool Server Installation on Ubuntu 16.04

A single testpool server is required. It maintains VM pool requirements for each hypervisor. Here are the steps to
install a testpool’s server:

1. Download testpool from github release area, for example v0.1.0:

wget https://github.com/testcraftsman/testpool/archive/v0.1.0.tar.gz
tar -xf testpool-0.l.0.tar.gz

2. Skip this step if you are installing Testpool on the KVM hypervisor, most likely these packages are already
installed.

sudo -H apt-get install -y libvirt-dev libxen-dev virtinst

3. Install several required packages:

9

http://www.github.com/testcraftsman/testpool/releases

testpool Documentation, Release 0.0.3

cd testpool-0.1.0
cat requirements.system | sudo xargs apt-get -y install
sudo -H apt-file update
sudo -H pip install --upgrade pip
sudo -H pip install -qr requirements.txt

4. Create debian packages,in a shell run:

make deb.build

5. Install:

sudo -H make install

10 Chapter 2. Installation

CHAPTER 3

Development

Prior to developing in testpool:

sudo -H make setup ./bin/tpl-db migrate

Additionally docker must be installed, tests and development rely on it.

3.1 Web Development

To simplify web development, developers can avoid using an actual hypervisor. Instead developers can create a fake
pool.

Since testpool uses django, once the web server is running it will automatically restart when content changes. In one
shell, run the testpool web server:

./bin/tpl-db runserver

In a new shell start the testpool daemon.:

./bin/tpl-daemon -vv

In a new shell, create several pools. The following creates two pool . The first pool uses template0 to generate two
fake VMs. The second pool creates three fake VMs from template1.:

./bin/tpl pool add localhost fake pool0 template0 2

./bin/tpl pool add localhost fake pool1 template1 3

The tpl-daemon will over time generate 5 VMs in the ready state. In other words, fake VMs are transitioned from
pending to reserved over a short period of time. Testpool web content showing overall VM pool statistics can be
found:

http://127.0.0.1:8000/testpool/pool

To manipulate VM content, meaning reserve and release VMs, review the vm command help:

11

testpool Documentation, Release 0.0.3

./bin/tpl vm --help

3.2 Debian Packaging

Before debian packages can be created apt-file must be installed and updated so that the python requirements.txt file
can be mapped to equivalent debian package dependencies.:

sudo apt-get install apt-file
sudo apt-file update
pip install pep8>=1.7.0 pylint>=1.5.4 pytest>=2.8.3

Make sure to set EMAIL before using dch Also note that versions are incremented in the change log:

dch -U

Build Testpool debian package and install:

make deb.build
sudo make install

12 Chapter 3. Development

CHAPTER 4

Log Stash Support

Testpool provides a structured log of pool status that includes the number of available VMs for each pool. This
information can be pushed to logstash and visualized with Kibana or Graphana.

The following instructions explain how to enable structured logging and push them to Logstash using Filebeat.

4.1 ELK Installation

ELK stack 5.5 is required which natively supports JSON FileBeat output. There are numerous sites to explain ELK
installation e.g. http://www.itzgeek.com/how-tos/linux/ubuntu-how-tos/setup-elk-stack-ubuntu-16-04.html was used
to test the following content.

4.2 Testpool Configuration

Configure testpool to save pool status. Edit the YAML file:

/etc/testpool/testpool.yml

Validate changes:

tplcfgcheck /etc/testpool/testpool.yml

Uncomment tpldaemon.pool.log. The default value is /var/log/testpool/pool.log and restart testpool daemon:

sudo systemctl restart tpl-daemon

Configure Logstash to receive JSON structured content. An example configuration file at
/etc/testpool/etc/logstash/conf.d/02-testpool-beat-input.conf.:

13

http://www.itzgeek.com/how-tos/linux/ubuntu-how-tos/setup-elk-stack-ubuntu-16-04.html

testpool Documentation, Release 0.0.3

sudo cp /etc/testpool/etc/logstash/conf.d/02-testpool-beat-input.conf /etc/logstash/
→˓conf.d/02-testpool-beat-input.conf
sudo systemctl restart logstash

Make sure elastic search and logstash start on boot:

sudo systemctl enable logstash sudo systemctl enable elasticsearch

The Logstash 02-testpool-beat-input.conf content.

##
testpool stores profile status in a structured log located at
/var/log/testpool/profile.log. As of elastic stack 5.0,
structured log is supported natively.
input {

beats {
port => 5045
codec => "json"

ssl => true
ssl_certificate => "/etc/ssl/logstash-forwarder.crt"
ssl_key => "/etc/ssl/logstash-forwarder.key"

}
}

output {
elasticsearch {
hosts => "127.0.0.1"
index => "%{[@metadata][beat]}-%{+YYYY.MM.dd}"

}
stdout {
codec => rubydebug

}
}

Configure Filebeat to push JSON content. An example is available at /etc/testpool/filebeat/filebeat.yml and can be
copied verbatim.:

sudo cp /etc/testpool/filebeat/filebeat.yml /etc/filebeat/filebeat.yml
sudo systemctl restart filebeat

The content below shows a sample Filebeat configuration.

############## Testpool Filebeat Configuration Example ##############
#
This file is an example configuration file highlighting only the
most common options. The filebeat.full.yml file from the same
directory contains all the supported options with more comments.
You can use it as a reference.
#
You can find the full configuration reference here:
https://www.elastic.co/guide/en/beats/filebeat/index.html
#
#============= Testpool Filebeat prospectors ========================

filebeat.prospectors:

- input_type: log

(continues on next page)

14 Chapter 4. Log Stash Support

testpool Documentation, Release 0.0.3

(continued from previous page)

##
By default testpool stores profiel status at the path below.
Change this if you change the location in
/etc/testpool/testpool.yml
paths:
- /var/log/testpool/profile.log

json:
message_key: event
keys_under_root: true

##
Change server to anything you want
fields:
server: localhost

tags: [
"testpool"

]

#========================== General =================================
#
The name of the shipper that publishes the network data. It can be
used to group all the transactions sent by a single shipper in the
web interface.
#name: testpool

The tags of the shipper are included in their own field with each
transaction published.
#tags: ["service-X", "web-tier"]

#========================== Outputs =================================
#
Configure what outputs to use when sending the data collected by
the beat. Multiple outputs may be used. The configuration below
assumes logstash

#---------------------- Elasticsearch output ------------------------
#output.elasticsearch:

Array of hosts to connect to.
#hosts: ["localhost:9200"]
#template.name: filebeat
#template.path: filebeat.template.json

Optional protocol and basic auth credentials.
#protocol: "https"
#username: "elastic"
#password: "changeme"

#----------------------- Logstash output ----------------------------
##
uncomment the appropriate authentication
output.logstash:

The Logstash hosts
hosts: ["127.0.0.1:5045"]
template.name: filebeat
template.path: filebeat.template.json

Optional SSL. By default is off.
List of root certificates for HTTPS server verifications

(continues on next page)

4.2. Testpool Configuration 15

testpool Documentation, Release 0.0.3

(continued from previous page)

#ssl.certificate_authorities: ["/etc/pki/root/ca.pem"]

Certificate for SSL client authentication
#ssl.certificate: "/etc/pki/client/cert.pem"

Client Certificate Key
#ssl.key: "/etc/pki/client/cert.key"
#ssl.key: "/etc/ssl/logstash-forwarder.key"
#tls:
certificate_authorities ["/etc/ssl/logstash-forwarder.crt"]

#============================ Logging ===============================

Sets log level. The default log level is info.
Available log levels are: critical, error, warning, info, debug
#logging.level: debug

At debug level, you can selectively enable logging only for some
components. To enable all selectors use ["*"]. Examples of other
selectors are "beat", "publish", "service".
#logging.selectors: ["*"]

16 Chapter 4. Log Stash Support

CHAPTER 5

Kibana 5.3

A sample Kibana dashboard with supporting visualization can be imported into Kibana. Content is available at:
/etc/testpool/kibana/testpool.json. /etc/testpool/kibana/testpool-dashboard.json.

17

testpool Documentation, Release 0.0.3

18 Chapter 5. Kibana 5.3

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

19

	Quick Start
	Simulation Demonstration
	Testpool Installation
	A Short Tour
	KVM Hypervisor Demonstration
	Testpool Stack
	KVM Installation
	A Short Tour

	Installation
	Getting Testpool
	What is Installed
	Testpool Server Installation on Ubuntu 16.04

	Development
	Web Development
	Debian Packaging

	Log Stash Support
	ELK Installation
	Testpool Configuration

	Kibana 5.3
	Indices and tables

